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First Order Delays in Action: 
Simple SIT Model 

 



Recall: Simple First-Order Decay 

 

People with
Virulent
Infection Deaths from

Infection

Mean time until
Death

Use Formula:  People with Virulent Infection/Mean time until Death 

Use Initial Value:   1000 



First-Order Decay 
(Variant of Last Time) 

 

Use Formula:  People with Virulent Infection*Per Month Likelihood of Death 

Use Initial Value:   1000 

Use Value:   0.2 

Recall:  How does this 
relate to the mean time 
until death? 



People in Stock 

 



Flow Rate of Deaths 

 



Cumulative Deaths 

 



Closeup 

 

Why this gap? 



50% per Month Risk of Deaths 

 

Why this gap? 



 

People (x)
Deaths

Annual Risk of
Death (alpha)

Immigration

Immigration Rate

Use Formula:  People (x) * Annual Risk of Death (alpha) 

Use Initial Value:   1000 

Use Value:   0 Use Value:   0.05 



Questions 

• What is behaviour of stock x? 

• What is the mean time until people die? 

• Suppose we had a constant inflow – what is 
the behaviour then? 

 



Answers 

• Behaviour Of Stock 

 

 

 

 

• Mean Time Until Death 

 Recall that if coefficient of first order delay is  , then 
mean time is 1/    (Here, 1/0.05  = 20 years) 
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Equilibrium Value of a First-Order Delay 

• Suppose we have flow of rate i into a stock with 
a first-order delay out 

– This could be from just a single flow, or many flows 

• The value of the stock will approach an 
equilibrium where inflow=outflow 

 



Equilibrium Value of 1st Order Delay 
• Recall: Outflow rate for 1st order delay=x 

– Note that this depends on the value of the stock! 

• Inflow rate=i 

• At equilibrium, the level of the stock must be such 
that inflow=outflow 
– For our case, we have 

         x=i 

  Thus x=i/ 

   The lower the chance of leaving per time unit (or 
the longer the delay), the larger the equilibrium 
value of the stock must be to make outflow=inflow 

 

 



Scenarios for First Order Delay:  
Variation in Inflow Rates 

• For different immigration (inflows) (what do you 
expect?) 

– Inflow=10 

– Inflow=20 

– Inflow=50 

– Inflow=100 

– Why do you see this “goal seeking” pattern? 

– What is the “goal” being sought? 

 

 



Behaviour of Stock for Different Inflows 

 

Why do we see this behaviour? 



Behaviour of Outflow for Different Inflows 

 

Why do we see this behaviour?   Imbalance (gap) causes change to stock 
(rise or fall)  change to outflow to lower gap until outflow=inflow 



Goal Seeking Behaviour 
• The goal seeking behaviour is associated with a 

negative feedback loop 

– The larger the population in the stock, the more people 
die per year 

• If we have more people coming in than are going 
out per year, the stock (and, hence, outflow!) rises 
until the point where inflow=outflows 

• If we have fewer people coming in than are going 
out per year, the stock declines (& outflow) declines 
until the point where inflow=outflows 

 

 



 

What does this tell us about how the system would respond to 
a sudden change in immigration? 

As a Causal Loop Diagram 



Response to a Change 

• Feed in an immigration “step function” that rises 
suddenly from 0 to 20 at time 50 

 

 

 

 

 

 

• Set the Initial Value of Stock to 0 

• How does the stock change over time? 

 



Create a Custom Graph & Display it as 
an Input-Output Object 

 

 

 

 

• Editing 

 



Create Input-Output Object 
(for Synthesim) 

 



Stock Starting Empty 
Flow Rates 

 

Inflow and Outflow
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How would this change with alpha? 



 

How would this change with alpha? 

Stock Starting Empty? 
Value of Stock (Alpha=.05) 



 

For Different Values of (1/) Alpha 
Flow Rates (Outflow Rises until = Inflow) 

This is for the flows.  What do stocks do? 



 

For Different Values of (1/) Alpha 
Value of Stocks 

Why do we see this behaviour?   A longer time delay (or smaller chance 
of leaving per unit time) requires x to be larger to make outflow=inflow 



Outflows as Delayed Version of Inputs 

 



 

Deaths
200

150

100

50

0
0 10 20 30 40 50 60 70 80 90 100

Time (Year)
Deaths : Step Functions at 50 Initial x 1000 alpha=pt05
Deaths : Step Functions at 50 Initial x 1000 alpha=pt1
Deaths : Step Functions at 50 Initial x 1000 alpha=pt2

People (x)
1,000

750

500

250

0
0 10 20 30 40 50 60 70 80 90 100

Time (Year)
"People (x)" : Step Functions at 50 Initial x 1000 alpha=pt05
"People (x)" : Step Functions at 50 Initial x 1000 alpha=pt1
"People (x)" : Step Functions at 50 Initial x 1000 alpha=pt2

What if stock doesn’t start empty? 
Decays at first (no inflow) & then output 
responds with delayed version of input 



Higher Order Delays & Aging 
Chains 



Moving Beyond the “memoryless 
assumption” 

• Recall that first order delays assume that the per-
time-unit risk of transitions to the outflow remains 
equal throughout simulation (i.e. are memoryless) 

• Problem: Often we know that transitions are not 
"memoryless” e.g.  

– It may be the transition reflects some physical delays not 
endogeneously represented (e.g. Slow-growth of 
bacterial) 

– Buildup of “damage” of high blood sugars (Glycosylation) 

 



Higher Orders of Delays 

• We can capture different levels of delay (with 
increasing levels of fidelity) using cascaded series of 
1st order delays 

• We call the delay resulting from such a series of k 
1st order delays a “kth order delay” 
– E.g. 2 first order delays in series yield a 2nd order delay 

• The behaviour of a kth order delay is a reflection of 
the behaviour of the 1st order delays out of which it 
is built 

• To understand the behaviour of kth order delays, we 
will keep constant the mean time taken to 
transition across the entire set of all delays 



Recall: Simple 1st Order Decay 

 

People with
Virulent
Infection Deaths from

Infection

Mean time until
Death

Use Formula:  People with Virulent Infection/Mean time until Death 

(Initial Value: 1) 



Recall:  1st Order Delay Behaviour 
• Conditional transition prob: For a 1st Order delay, 

the per-time-unit likelihood of leaving given that 
one has not yet left the stock remains constant  

• Unconditional transition prob: For a 1st Order delay, 
the unconditional per-time-unit likelihood of 
leaving declines exponentially 

– i.e. if were were originally in the stock, our chance of 
having left in the course of a given time unit (e.g. month) 
declines exponentially  

• This reflects the fact that there are fewer people who could 
still leave during this time unit! 

 

 

 

 



Recall:  1st Order Delay Behaviour 

 

(Likelihood of Still being In System) 

(Per-month chance of transitioning  
out during this month) 



2nd Order Delay 

 

(Initial Value: 1) (Initial Value: 0) 

Use Formula: 
Mean Time to Transition Across All Stages/Stage Count 

(Use value of 2) 

(Use value of 50) 



2nd Order Delay 

 

(Likelihood of Still being In System) 

(Per-month chance of transitioning  
out during this month) 



3rd Order Delay 

 



3rd Order Delay 

 

(Likelihood of Still being In System) 

(Per-month chance of transitioning  
out during this month) 



1st through 6th 
OrderDelays 

 

(Likelihood of Still being In System) 

(Per-month chance of transitioning  
out during this month) 



Mean Times to Depart Final Stage 
• Mean time of k stages is just k times mean time of one 

stage (e.g. if the mean time for leaving 1 stage requires 
time , mean time for k = k* 

• In our examples, as we added stages, we reduced the 
mean time per stage so as to keep the total constant! 

– i.e. if we have k stages, the mean time to leave each stage is 
1/k times what it would be with just 1 stage 

• Infinite order delay: As we add more and more stages 
(k), the distribution of time to leave the last stage 
approaches a normal distribution 

– If we reduce the mean time per stage so as to keep the total 
time constant, this will approach an impulse function  

• This indicates an exactly fixed time to transition through all stages! 

 

 



Distribution of Time to Depart Final Stage 
• The distributions for the 

total time taken to 
transition out of the last of k 
stages are members of the 
Erlangdistribution family 
– These are the same as the 

distribution for the 
kthinterarrival time of a 
Poisson process 

• k=1 gives exponential 
distribution (first order 
delay) 

• As k, approaches 
normal distribution 
(Gaussian pdf) 

 

 

 

From Wikipedia, 2009 



Notes 

• We do not generally define kthorder delays simply as 
a means to the end of capturing a certain 
distribution 

– Often representing each stage for its own sake is 
desirable (see examples) 

• Different causal influences 

– Often we represent each such stage as a 1st order delay 

• With that proviso, many modeling packages 
(including Vensim) directly support higher-order 
delays – use with caution 
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Delays & Competing Risks 



Competing Risks 

• Suppose we have another outflow from the 
stock.  How does that change our mean time 
of proceeding specifically down flow 1 (here, 
developing diabetes)? 

Diabetic Population Population with
ESRD

Deaths of Diabetic
Population

Diabetics Progressing
to ESRD

Mean Time to
Develop ESRD

Annual Risk of
Diabetic Mortality



Basic Dynamics 

 

Diabetic Population Population with
ESRD

Deaths of Diabetic
Population

Diabetics Progressing
to ESRD

Mean Time to
Develop ESRD

Annual Risk of
Diabetic Mortality



Effect of Doubling Diabetic Mortality Rate 

 



Effect on Progression Rates to ESRD 

 

Do the two scenarios have the same or different mean times to develop 
ESRD?  If different, which scenario is larger? 



Why the Lower Mean Time? 

• Why is the mean time to transition different, 
despite the fact that we didn’t change the transition 
parameter? 

• Mathematical explanation (Following slides): 
Calculation of mean time varies with mortality rate 

• Intuition:   

– Higher death rateDiabetic population will rapidly 
decrease &transitions to ESRD will be skewed towards 
earlier transitionsEarlier mean time to transition 

– Lower death rateDiabetic population will decrease less 
rapidly & many will make later transitions to ESRD 
Later mean time to transition 

 

 



Competing Risks Stock Trajectory 
Solution Procedure 

 

• Suppose we start x at time 0 with initial value 
x(0), and we want to find the value of x at time T 

• This is just like our previous differential equation, 
except that “” has been replaced by “(+)” 

– The solution must therefore be the same as before, 
with the appropriate replacement 

– Thus 
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Mean Time to Leave: Competing Risks 
• p(t)dt here is the likelihood of a person leaving via flow 

1 (e.g. developing ESRD) exactly between time t &dt+t 
– We start the simulation at t=0, so p(t)=0  for t<0 
– For t>0, P(leaving on flow 1 exactly between time t 

&dt+t)=P(leaving on flow 1 exactly between time t 
&t+dt|Still have not left by time t)P(Still have not left by time 
t) 

For T>0, P(Still have not left by time T)= 
For P(leaving exactly between time t and t+dt|Still have 

not left by time t) 
     Recall: For us, probability of leaving in a time dt 

always=dt 
     Thus P(leaving exactly between time t and t+dt|Still 

have not left by time t)= dt 
P(t)dt=P(leaving exact b.t. time t &dt+t) 
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Mean Time to Transition via Flow 1: 
Competing Risks 

• By the same procedure as before, we have 

 

 

• Using the formula we derived for the integral 
expression, we have 

 

 

• Note that this correctly approaches the single-
flow case as 0 
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“Aging Chains” (including successive 1st 
Order Delays & Competing Risks) in our 

Model of Chronic Kidney Disease 
 


