## Delays Part 2 Equilibrium Behaviour Higher-Order Delays

Nathaniel Osgood CMPT 858 2-23-2010





## First Order Delays in Action: Simple SIT Model



Department of Computer Science

## First Order Delays in Action: Simple SIT Model



## **Recall: Simple First-Order Decay**





Use Formula: People with Virulent Infection\*Per Month Likelihood of Death

## People in Stock

People with Virulent Infection



People with Virulent Infection : Baseline

# Flow Rate of Deaths

Deaths



# Cumulative Deaths



Cumulative Deaths : Baseline

## Closeup



Cumulative Deaths : Baseline

## 50% per Month Risk of Deaths

#### Cumulative Deaths



Cumulative Deaths : Baseline pt5



## Questions

- What is behaviour of stock x?
- What is the mean time until people die?
- Suppose we had a constant inflow what is the behaviour then?



• Mean Time Until Death Recall that if coefficient of first order delay is  $\alpha$ , then mean time is  $1/\alpha$  (Here, 1/0.05 = 20 years)

## Equilibrium Value of a First-Order Delay

 Suppose we have flow of rate i into a stock with a first-order delay out

- This could be from just a single flow, or many flows

The value of the stock will approach an equilibrium where inflow=outflow

## Equilibrium Value of 1<sup>st</sup> Order Delay

- Recall: Outflow rate for 1<sup>st</sup> order delay=αx
   Note that this depends on the value of the stock!
- Inflow rate=i
- At equilibrium, the level of the stock must be such that inflow=outflow
  - For our case, we have

αx=i

Thus x=i/ $\alpha$ 

The lower the chance of leaving per time unit (or the longer the delay), the larger the equilibrium value of the stock must be to make outflow=inflow

## Scenarios for First Order Delay: Variation in Inflow Rates

- For different immigration (inflows) (what do you expect?)
  - Inflow=10
  - Inflow=20
  - Inflow=50
  - Inflow=100
  - Why do you see this "goal seeking" pattern?
  - What is the "goal" being sought?

#### Behaviour of Stock for Different Inflows People (x)



Why do we see this behaviour?

#### Behaviour of *Outflow* for Different Inflows Deaths



Why do we see this behaviour? Imbalance (gap) causes change to stock (rise or fall)  $\Rightarrow$  change to outflow to lower gap **until outflow=inflow** 

## **Goal Seeking Behaviour**

- The goal seeking behaviour is associated with a negative feedback loop
  - The larger the population in the stock, the more people die per year
- If we have more people coming in than are going out per year, the stock (and, hence, outflow!) rises until the point where inflow=outflows
- If we have fewer people coming in than are going out per year, the stock declines (& outflow) declines until the point where inflow=outflows



What does this tell us about how the system would respond to a sudden change in immigration?

## Response to a Change

 Feed in an immigration "step function" that rises suddenly from 0 to 20 at time 50

| Editing equation for - Immigration Rate                                                                      |         |
|--------------------------------------------------------------------------------------------------------------|---------|
| Immigration Rate                                                                                             | Add Eq  |
| if then else(Time < 50, 0, 20)                                                                               | <       |
| Type       Undo       7       8       9       +       Variables       Functions       More         Auxiliary | •       |
| Com-<br>ment:                                                                                                | < >     |
| Group: .first order d 💌 Range: 🛛 🛛 🖌 Go To: Prev Next < Hilite                                               | Sel New |
| Errors: Equation OK                                                                                          | -       |
| OK Check Syntax Check Model Delete Variable                                                                  | Cancel  |

- Set the Initial Value of Stock to 0
- How does the stock change over time?

## Create a Custom Graph & Display it as an Input-Output Object

| Control Panel                                                                  |                     |                |
|--------------------------------------------------------------------------------|---------------------|----------------|
| Variable   Time Axis   Scaling   Datasets                                      | araphs Placeholders |                |
| Rec Coord     Redo Open     Inflow_and_0       Custom Graphset        *Default | utflow              |                |
| Open         NewGS           Save As         Save                              |                     |                |
| Into Model Close Modify  Open WIP Graph on Sim Display                         | Copy<br>Delete      | New<br>Reorder |
| 🔽 Keep on top                                                                  |                     | Close          |

• Editing

| Name    | Inflow_and_Outflow  | Quick   | ► Hide:     | Title      | X Label     | Legend      |
|---------|---------------------|---------|-------------|------------|-------------|-------------|
| Title   | Inflow and Outflow  | )       |             |            |             |             |
| X-Axis  |                     | Sel     | X Label     |            |             |             |
| X-min   | X-max               |         | X-divisions |            | ol-Interval | Y-div       |
| Stamp   |                     |         | Comment     |            |             |             |
| Туре    | Norm C Cum          | C Stack | 🗌 🗆 Dots 🛛  | Fill Width | ۱ 🕅 ا       | Height      |
| Scale \ | /ariable            | Dataset | Lab         | el LineW   | Units       | Y-min Y-max |
|         | gration Sel         |         |             |            |             |             |
| Deat    | hs Sel              |         |             |            |             |             |
|         | Sel                 |         |             |            |             |             |
|         | Sel                 |         |             |            |             |             |
|         | Sel                 |         |             |            |             |             |
|         | Sel                 |         |             |            |             |             |
| 🗆 As W  | IP Graph (maxpoints |         | Сору        | to Tes     | t output    | Soft Bounds |
|         | OK                  | A       | s Table     |            | Cano        | el          |

## Create Input-Output Object (for Synthesim)



|                                          | In         | put Outp | out Object s | settings                   |                       |        |   |
|------------------------------------------|------------|----------|--------------|----------------------------|-----------------------|--------|---|
| Object Type<br>C Input Slider            | C Output 1 | Workbe   | nch Tool     | <ul> <li>Output</li> </ul> | ut Custom G           | raph   |   |
| Variable name.                           | Choose:    | Level    |              | Auxiliary                  | Data.                 |        | _ |
| Slider Settings<br>Ranging from          | 0          | to       | 100          | with incre                 | ement<br>abel with va | arname |   |
| Custom Graph or Analysis Tool for Output |            |          |              |                            |                       |        |   |
|                                          | эк         |          |              | Ca                         | ancel                 |        |   |

#### Stock Starting Empty Flow Rates Inflow and Outflow



## Stock Starting Empty? Value of *Stock* (Alpha=.05)

People (x)



How would this change with alpha?

## For Different Values of (1/) Alpha Flow Rates (Outflow Rises until = Inflow)



This is for the *flows*. What do stocks do?

## For Different Values of (1/) Alpha Value of Stocks



### **Outflows as Delaved** Version of Inputs









## Higher Order Delays & Aging Chains

# Moving Beyond the "memoryless assumption"

- Recall that first order delays assume that the pertime-unit risk of transitions to the outflow remains equal throughout simulation (i.e. are memoryless)
- Problem: Often we know that transitions are not "memoryless" e.g.
  - It may be the transition reflects some physical delays not endogeneously represented (e.g. Slow-growth of bacterial)
  - Buildup of "damage" of high blood sugars (Glycosylation)

## Higher Orders of Delays

- We can capture different levels of delay (with increasing levels of fidelity) using cascaded series of 1<sup>st</sup> order delays
- We call the delay resulting from such a series of k
   1<sup>st</sup> order delays a "k<sup>th</sup> order delay"
  - E.g. 2 first order delays in series yield a 2<sup>nd</sup> order delay
- The behaviour of a k<sup>th</sup> order delay is a reflection of the behaviour of the 1<sup>st</sup> order delays out of which it is built
- To understand the behaviour of k<sup>th</sup> order delays, we will keep constant the mean time taken to transition across the entire set of all delays

## Recall: Simple 1<sup>st</sup> Order Decay



Use Formula: People with Virulent Infection/Mean time until Death

## Recall: 1<sup>st</sup> Order Delay Behaviour

- Conditional transition prob: For a 1<sup>st</sup> Order delay, the per-time-unit likelihood of leaving given that one has not yet left the stock remains constant
- Unconditional transition prob: For a 1<sup>st</sup> Order delay, the unconditional per-time-unit likelihood of leaving declines exponentially
  - i.e. if were were originally in the stock, our chance of having left in the course of a given time unit (e.g. month) declines exponentially
    - This reflects the fact that there are fewer people who could still leave during this time unit!

## Recall: 1<sup>st</sup> Order Delay Behaviour



#### 2<sup>nd</sup> Order Delay





Total Likelihood of Still Being in System : 2nd Order Delay

## 3<sup>rd</sup> Order Delay







## Mean Times to Depart Final Stage

- Mean time of k stages is just k times mean time of one stage (e.g. if the mean time for leaving 1 stage requires time μ, mean time for k = k\*μ
- In our examples, as we added stages, we reduced the mean time per stage so as to keep the total constant!
  - i.e. if we have k stages, the mean time to leave each stage is
     1/k times what it would be with just 1 stage
- Infinite order delay: As we add more and more stages (k→∞), the distribution of time to leave the last stage approaches a normal distribution
  - If we reduce the mean time per stage so as to keep the total time constant, this will approach an impulse function
    - This indicates an exactly fixed time to transition through all stages!

## **Distribution of Time to Depart Final Stage**

- The distributions for the total time taken to transition out of the last of k stages are members of the *Erlang*distribution family
  - These are the same as the distribution for the k<sup>th</sup>interarrival time of a Poisson process
- k=1 gives exponential distribution (first order delay)
- As k→∞, approaches normal distribution (Gaussian pdf)

| U 4                                          | 4 0 0 10 12 14 10 10 20                                                                       |
|----------------------------------------------|-----------------------------------------------------------------------------------------------|
| Parameters                                   | $k>0 \in \mathbb{Z}$ shape $\lambda>0$ rate (real) alt.: $	heta=1/\lambda>0$ scale (real)     |
| Support                                      | $x \in [0; \infty)$                                                                           |
| Probability<br>density<br>function (pdf)     | $\frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}$                                             |
| Cumulative<br>distribution<br>function (cdf) | $\frac{\gamma(k,\lambda x)}{(k-1)!} = 1 - \sum_{n=0}^{k-1} e^{-\lambda x} (\lambda x)^n / n!$ |
| Mean                                         | $k/\lambda$                                                                                   |
| Median                                       | no simple closed form                                                                         |
| Mode                                         | $(k-1)/\lambda$ for $k\geq 1$                                                                 |
| Variance                                     | $k/\lambda^2$                                                                                 |
| Skewness                                     | $\frac{2}{\sqrt{k}}$                                                                          |
| Excess                                       | 6                                                                                             |
| kurtosis                                     | $\overline{k}$                                                                                |
| Entropy                                      | $(1-k)\psi(k) + \ln \frac{\Gamma(k)}{\lambda} + k$                                            |
| Moment-<br>generating<br>function (mgf)      | $(1-t/\lambda)^{-k}$ for $t<\lambda$                                                          |
| Characteristic<br>function                   | $(1 - it/\lambda)^{-k}$                                                                       |

From Wikipedia, 2009

## Notes

- We do not generally define k<sup>th</sup>order delays simply as a means to the end of capturing a certain distribution
  - Often representing each stage for its own sake is desirable (see examples)
    - Different causal influences
  - Often we represent each such stage as a 1st order delay
- With that proviso, many modeling packages (including Vensim) directly support higher-order delays – use with caution

## Slides Adapted from External Source Redacted from Public PDF for Copyright Reasons

## **Delays & Competing Risks**

## **Competing Risks**

 Suppose we have another outflow from the stock. How does that change our mean time of proceeding specifically down flow 1 (here, developing diabetes)?





## Effect of Doubling Diabetic Mortality Rate



## Effect on Progression Rates to ESRD

Diabetics Progressing to ESRD



ESRD? If different, which scenario is larger?

## Why the Lower Mean Time?

- Why is the mean time to transition different, despite the fact that we didn't change the transition parameter?
- Mathematical explanation (Following slides): Calculation of mean time varies with mortality rate
- Intuition:
  - Higher death rate⇒Diabetic population will rapidly decrease &transitions to ESRD will be skewed towards earlier transitions⇒Earlier mean time to transition
  - Lower death rate⇒Diabetic population will decrease less rapidly & many will make later transitions to ESRD ⇒Later mean time to transition

Competing Risks Stock Trajectory  
Solution Procedure  
$$\frac{dx}{dt} = -\alpha x - \beta x = -(\alpha + \beta) x$$

- Suppose we start x at time 0 with initial value x(0), and we want to find the value of x at time T
- This is just like our previous differential equation, except that " $\alpha$ " has been replaced by "( $\alpha$ + $\beta$ )"
  - The solution must therefore be the same as before, with the appropriate replacement
  - Thus

$$x(T) = x(0)e^{-(\alpha+\beta)T}$$

## Mean Time to Leave: Competing Risks

- p(t)dt here is the likelihood of a person leaving via flow 1 (e.g. developing ESRD) exactly between time t &dt+t
  - We start the simulation at t=0, so p(t)=0 for t<0</p>
  - For t>0, P(leaving on flow 1 exactly between time t &dt+t)=P(leaving on flow 1 exactly between time t &t+dt|Still have not left by time t)P(Still have not left by time t)
- For T>0, P(Still have not left by time T)=  $e^{-(\alpha+\beta)T}$
- For P(leaving exactly between time t and t+dt|Still have not left by time t)

Recall: For us, probability of leaving in a time dt always= $\alpha$ dt

Thus P(leaving exactly between time t and t+dt|Still have not left by time t)=  $\alpha$ dt

P(t)dt=P(leaving exact b.t. time t &dt+t)

 $= \alpha e^{-(\alpha+\beta)T}$ 

## Mean Time to Transition via Flow 1: Competing Risks

• By the same procedure as before, we have

$$E[p(t)] = \alpha \int_{t=0}^{t=\infty} t e^{-(\alpha+\beta)T} dt$$

- Using the formula we derived for the integral expression, we have  $E[p(t)] = \frac{\alpha}{\left(\alpha + \beta\right)^2}$
- Note that this correctly approaches the single-flow case as  $\beta \rightarrow 0$

## "Aging Chains" (including successive 1<sup>st</sup> Order Delays & Competing Risks) in our Model of Chronic Kidnev Disease

