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Our Route Forward:
3 Common Types of Delay-Related Dynamics

First Order
Delays
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Aging Chains Competing Delays &
& Higher- Risks Oscillations

Order Delays




First Order Delays in Action:
Simple SIT Model
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First Order Delays in Action:
Simple SIT Model
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Recall: Simple First-Order Decay
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Use Formula: People with Virulent Infection/Mean time until Death




Recall: How does this

i rSt-Order Decay relate to the mean time
(Variant of Last Time)  untildeath?
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Use Formula: People with Virulent Infection*Per Month Likelihood of Death



People in Stock
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Flow Rate of Deaths
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Cumulative Deaths
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Cumulative Deaths
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50% per Month Risk of Deaths
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Use Value: 0 Use Value: 0.05
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Use Initial Value: 1000

Use Formula: People (x) * Annual Risk of Death (alpha)



Questions

 What is behaviour of stock x?
 What is the mean time until people die?

e Suppose we had a constant inflow — what is
the behaviour then?



Answers
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e Behaviour Of Stock :

TimeYed!)

e Mean Time Until Death

Recall that if coefficient of first order delay is o, then
mean timeis 1/a  (Here, 1/0.05 = 20 years)



Equilibrium Value of a First-Order Delay

e Suppose we have flow of rate i into a stock with
a first-order delay out

— This could be from just a single flow, or many flows

* The value of the stock will approach an
equilibrium where inflow=outflow



Equilibrium Value of 15t Order Delay

e Recall: Outflow rate for 15t order delay=0oux
— Note that this depends on the value of the stock!

* Inflow rate=i
* At equilibrium, the level of the stock must be such
that inflow=outflow
— For our case, we have
OLX=I
Thus x=i/o
The lower the chance of leaving per time unit (or

the longer the delay), the larger the equilibrium
value of the stock must be to make outflow=inflow



Scenarios for First Order Delay:
Variation in Inflow Rates

* For different immigration (inflows) (what do you
expect?)
— Inflow=10
— Inflow=20
— Inflow=50
— Inflow=100
— Why do you see this “goal seeking” pattern?

— What is the “goal” being sought?



Behaviour of Stock for Different Inflows
People (x)
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Why do we see this behaviour?



Behaviour of Outf/owhfor Different Inflows
Deaths
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Why do we see this behaviour? Imbalance (gap) causes change to stock
(rise or fall) = change to outflow to lower gap until outflow=inflow




Goal Seeking Behaviour

* The goal seeking behaviour is associated with a
negative feedback loop

— The larger the population in the stock, the more people
die per year
* |f we have more people coming in than are going
out per year, the stock (and, hence, outflow!) rises
until the point where inflow=outflows

* |f we have fewer people coming in than are going
out per year, the stock declines (& outflow) declines
until the point where inflow=outflows



As a Causal Loop Diagram
Rate of Inflow

surplus of Inflow
+ bevond Outtlow

Stock

Rate of Outflow

What does this tell us about how the system would respond to
a sudden change in immigration?



Response to a Change

Feed in an immigration “step function” that rises
suddenly from 0 to 20 at time 50

Typ Unda |ﬂﬂ 9| +| Wariables l Funu:tiu:uns] Mare ]
Auiary :lv {1 ﬂﬂ Bl - Choose Variable.. | | Imputs |
|N mal j ﬂﬂ 30 | Time
[ Supplementan ﬂﬂ
Help JJJJ
itz | J
Cormn-
ment:
Group: f storderd | Range: | | | GoTo:  Prev| Nest| < | Hiite| Sel..| New|
Ermors: J
IIIK | Check Syntax | Check Model | Delete Variable | Cancel |

* Set the Initial Value of Stock to O

How does the stock change over time?



Create a Custom Graph & Display it as
an Input-Output Object
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Create Input-Output Object
(for Synthesim)

Input Output Object settings
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Stock Starting Empty

e




Stock Starting Empty?
Value of Stock (Alpha=.05)

People (%)

400

300

200

100

0

0 10 20 30 40 50 60 70 &80 Q0 100
Time (Year)
"Paopla (X" ;. Step Fonction § to 20 Initisl Stock Empiy

HOw would this change with alphar¥




For Different Values of (1/) Alpha
Flow Rates (Outflow Rises until = Inflow)
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This is for the flows. What do stocks do?



For Different Values of (1/) Alpha
Valye E)Stocks
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"People (x)" : Step Functions 2 vr delay
"People (x)" - Step Functions 20 vr delay
"People (x)" - Step Functions 10 vr delay
"People (x)" - Step Functions 3 vyr delay
Why do we see this behaviour? A longer time delay (or smaller chance

of leaving per unit time) requires x to be larger to make outflow=inflow




Outflows as Delaved Version of Inputs

Inflow and Qutflow
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What if stock doesn’t start empty?
Decays at first (no inflow) & then output

e

responds with delayed vdrsion of input
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Higher Order Delays & Aging
Chains



Moving Beyond the “memoryless
assumption”

* Recall that first order delays assume that the per-
time-unit risk of transitions to the outflow remains
equal throughout simulation (i.e. are memoryless)

* Problem: Often we know that transitions are not
"memoryless” e.g.

— It may be the transition reflects some physical delays not
endogeneously represented (e.g. Slow-growth of
bacterial)

— Buildup of “damage” of high blood sugars (Glycosylation)



Higher Orders of Delays

We can capture different levels of delay (with
increasing levels of fidelity) using cascaded series of
15t order delays

We call the delay resulting from such a series of k
15t order delays a “kt" order delay”

— E.g. 2 first order delays in series yield a 2" order delay

The behaviour of a k" order delay is a reflection of
the behaviour of the 15t order delays out of which it
is built

To understand the behaviour of kt" order delays, we
will keep constant the mean time taken to
transition across the entire set of all delays



Recall: Simple 15t Order Decay
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(Initial Value: 1)

Use Formula: People with Virulent Infection/Mean time until Death



Recall: 15t Order Delay Behaviour

e Conditional transition prob: For a 1t Order delay,
the per-time-unit likelihood of leaving given that
one has not yet left the stock remains constant

* Unconditional transition prob: For a 15t Order delay,
the unconditional per-time-unit likelihood of
leaving declines exponentially
— i.e. if were were originally in the stock, our chance of

having left in the course of a given time unit (e.g. month)
declines exponentially

* This reflects the fact that there are fewer people who could
still leave during this time unit!



Recall: 15t Order Delay Behaviour
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2" Order Delay

Use Formula:
Mean Time to Transition Across All Stages/Stage Count

Mean Time to
Transition Across All Stage Count
Stages (Use value'of 2)

(Use value of 50)
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2"d Order Delay

Stage 2 Outflow
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3" Order Delay
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34 Order Delay

Stage 3 Outflow
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Outflow
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Mean Times to Depart Final Stage

* Mean time of k stages is just k times mean time of one
stage (e.g. if the mean time for leaving 1 stage requires
time u, mean time for k = k*u

* |n our examples, as we added stages, we reduced the
mean time per stage so as to keep the total constant!

— i.e. if we have k stages, the mean time to leave each stage is
1/k times what it would be with just 1 stage
* Infinite order delay: As we add more and more stages
(k—0), the distribution of time to leave the last stage
approaches a normal distribution

— |If we reduce the mean time per stage so as to keep the total
time constant, this will approach an impulse function

* This indicates an exactly fixed time to transition through all stages!



Distribution of Time to Depart Final Stage

* The distributions for the parameters ﬁiﬂmi[fj““
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From Wikipedia, 2009



Notes

* We do not generally define kt"order delays simply as
a means to the end of capturing a certain
distribution

— Often representing each stage for its own sake is
desirable (see examples)

* Different causal influences

— Often we represent each such stage as a 1st order delay

* With that proviso, many modeling packages
(including Vensim) directly support higher-order
delays — use with caution
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Delays & Competing Risks



Competing Risks

* Suppose we have another outflow from the
stock. How does that change our mean time
of proceeding specifically down flow 1 (here,
developing diabetes)?
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Effect of Doubling Diabetic Mortality Rate
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Effect on Progression Rates to ESRD

Diabetics Progressing to ESRD
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Do the two scenarios have the same or different mean times to develop
ESRD? If different, which scenario is larger?




Why the Lower Mean Time?

 Why is the mean time to transition different,

despite the fact that we didn’t change the transition
parameter?

 Mathematical explanation (Following slides):
Calculation of mean time varies with mortality rate

* |ntuition:

— Higher death rate=>Diabetic population will rapidly
decrease &transitions to ESRD will be skewed towards
earlier transitions=Earlier mean time to transition

— Lower death rate=>Diabetic population will decrease less
rapidly & many will make later transitions to ESRD
—>Later mean time to transition



Competing Risks Stock Trajectory
' Solution Procedure
X

E:—ax—,b’x:—(owﬂ)x

e Suppose we start x at time 0 with initial value
x(0), and we want to find the value of x at time T

e This is just like our previous differential equation,
except that “a” has been replaced by “(a+3)”

— The solution must therefore be the same as before,
with the appropriate replacement

— Thus

X(T) = x(0)e **T



Mean Time to Leave: Competing Risks

* p(t)dt here is the likelihood of a person leaving via flow
1 (e.g. developing ESRD) exactly between time t &dt+t

— We start the simulation at t=0, so p(t)=0 for t<0

— For t>0, P(leaving on flow 1 exactly between time t
&dt+t)=P(leaving on flow 1 exactly between time t
&t+dt|Still have not left by time t)P(Still have not left by time
t)

For T>0, P(Still have not left by time T)= g («+A)T

For P(leaving exactly between time t and t+dt|Still have
not left by time t)

Recall: For us, probability of leaving in a time dt
always=oudt

Thus P(leaving exactly between time t and t+dt| Still
have not left by time t)= adt

P(t)dt=P(leaving exact b.t. time t &dt+t (g
(t)dt=P(leaving )T g



Mean Time to Transition via Flow 1:
Competing Risks
* By the same procedure as before, we have

t=00
E[p(t)] = « j te (A" dt
t=0

* Using the formula we derived for the integral

expression, we have 94
Elp(t)] =
[p(t)] (a+f)

* Note that this correctly approaches the single-
flow case as 3—0



“Aging Chains” (including successive 15
Order Delays & Competing Risks) in our

Model of Chronic Kidnev Disease
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